Time-dependent PDEs

Copyright (C) 2010-2020 Luke Olson

Copyright (C) 2020 Andreas Kloeckner

MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
In [1]:
import numpy as np

import matplotlib.pyplot as pt
In [2]:
def rk4_step(y, t, h, f):

    k1 = f(t, y)

    k2 = f(t+h/2, y + h/2*k1)

    k3 = f(t+h/2, y + h/2*k2)

    k4 = f(t+h, y + h*k3)

    return y + h/6*(k1 + 2*k2 + 2*k3 + k4)
In [11]:
mesh = np.linspace(0, 1, 200)

dx = mesh[1]-mesh[0]

(all of the PDEs below use periodic boundary conditions: $u(0)=u(1)$)

Advection equation: $u_t+u_x=0$

Equivalent: $u_t=-u_x$

In [12]:
def f_advection(t, u):

    du = (np.roll(u, -1, axis=-1) - np.roll(u, 1, axis=-1))/(2*dx)

    return -du

Heat equation: $u_t=u_{xx}$

In [13]:
def f_heat(t, u):

    d2u = (

        np.roll(u, -1, axis=-1)

        - 2*u

        + np.roll(u, 1, axis=-1))/(dx**2)

    return d2u

Wave equation: $u_{tt}=u_{xx}$

NOTE: Two time derivatives $\rightarrow$ convert to first order ODE.

$$u_t=v$$$$v_t=u_{xx}$$
In [14]:
def f_wave(t, w):

    u, v = w

    d2u = (

        np.roll(u, -1, axis=-1)

        - 2*u

        + np.roll(u, 1, axis=-1))/(dx**2)

    return np.array([v, d2u])

Initial condition

In [15]:
current_t = 0



#current_u = np.sin(2*np.pi*mesh)*0.5+1

#current_u = (mesh > 0.3) & (mesh < 0.7)

#current_u = (mesh > 0.45) & (mesh < 0.55)

current_u = np.exp(-(mesh-0.5)**2*150)

#current_u = 2*np.abs(mesh-0.5)



current_u = np.array([current_u], dtype=np.float64)

current_u.shape
Out[15]:
(1, 200)
In [16]:
# Add a second component if needed (for wave equation)

current_u = np.vstack([current_u,np.zeros(len(mesh))])

current_u.shape
Out[16]:
(2, 200)

Time loop

Run this cell many times in place (using Ctrl-Enter):

In [26]:
dt = dx # experiment with this



#current_f = f_advection

#current_f = f_heat

current_f = f_wave



for i in range(5): # takes this many time steps at a time

    current_u = rk4_step(current_u, current_t, dt, current_f)

    current_t += dt



pt.ylim([-0.25, 1.25])

pt.grid()

pt.plot(mesh, current_u[0])
Out[26]:
[<matplotlib.lines.Line2D at 0x7ff76cdad668>]
In [ ]: