Steepest Descent

Copyright (C) 2020 Andreas Kloeckner

MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
In [3]:
import numpy as np

import numpy.linalg as la



import scipy.optimize as sopt



import matplotlib.pyplot as pt

from mpl_toolkits.mplot3d import axes3d

Setup

Here's a function. It's an oblong bowl made of two quadratic functions.

This is pretty much the easiest 2D optimization job out there.

In [4]:
def f(x):

    return 0.5*x[0]**2 + 2.5*x[1]**2



def df(x):

    return np.array([x[0], 5*x[1]])

Let's take a look at the function. First in 3D:

In [5]:
fig = pt.figure()

ax = fig.gca(projection="3d")



xmesh, ymesh = np.mgrid[-2:2:50j,-2:2:50j]

fmesh = f(np.array([xmesh, ymesh]))

ax.plot_surface(xmesh, ymesh, fmesh)
Out[5]:
<mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fea691c1880>

And then as a "contour plot":

In [6]:
pt.axis("equal")

pt.contour(xmesh, ymesh, fmesh)
Out[6]:
<matplotlib.contour.QuadContourSet at 0x7fea69138af0>

Part 1: Steepest Descent

Next, initialize steepest descent with a starting guess:

In [319]:
guesses = [np.array([2, 2./5])]

Next, run Steepest Descent:

In [356]:
#clear

x = guesses[-1]

s = -df(x)



def f1d(alpha):

    return f(x + alpha*s)



alpha_opt = sopt.golden(f1d)

next_guess = x + alpha_opt * s

guesses.append(next_guess)



print(next_guess)
[ 6.10454625e-07 -1.22090963e-07]

Here's some plotting code to illustrate what just happened:

In [357]:
pt.figure(figsize=(9, 9))

pt.axis("equal")

pt.contour(xmesh, ymesh, fmesh, 50)

it_array = np.array(guesses)

pt.plot(it_array.T[0], it_array.T[1], "x-")
Out[357]:
[<matplotlib.lines.Line2D at 0x7fe78a5a62e8>]
In [358]:
for i, guess in enumerate(guesses):

    print(i, la.norm(guess, 2))
0 2.039607805437114
1 1.3597385362818037
2 0.9064923598953564
3 0.6043282354184075
4 0.402885493365651
5 0.268590327422494
6 0.1790602196535349
7 0.11937347850578087
8 0.07958231961357493
9 0.05305487971599619
10 0.03536991972494859
11 0.023579946499640153
12 0.0157199643742649
13 0.01047997619145283
14 0.006986650869603477
15 0.004657767182597052
16 0.00310517817085647
17 0.0020701187313361103
18 0.0013800791942763257
19 0.0009200527639282007
20 0.0006133685351837453
21 0.0004089123383293087
22 0.00027260823928739256
23 0.00018173881650443178
24 0.0001211592177181258
25 8.077280684766319e-05
26 5.3848541322305716e-05
27 3.589902516077526e-05
28 2.393268515749757e-05
29 1.595512232752962e-05
30 1.0636748894671809e-05
31 7.0911654939472895e-06
32 4.727443954112351e-06
33 3.1516290931456465e-06
34 2.101086219381249e-06
35 1.4007240373068642e-06
36 9.33816096573883e-07
37 6.22544015961566e-07

Part 2: Adding in "momentum" / the "heavy ball" method

Steepest descent with added "momentum" term:

$$x_{k+1} = x_k - \alpha \nabla f(x_k) \color{red}{+ \beta (x_{k}-x_{k-1})}$$
In [285]:
guesses = [np.array([2, 2./5])]



# beta = 0.01

beta = 0.1

# beta = 0.5

# beta = 1

Explore different choices of the "momentum parameter" $\beta$ above.

In [312]:
#clear

x = guesses[-1]

s = -df(x)



def f1d(alpha):

    return f(x + alpha*s)



alpha_opt = sopt.golden(f1d)

next_guess = x + alpha_opt * s



if len(guesses) >= 2:

    next_guess = next_guess + beta * (guesses[-1] - guesses[-2])



guesses.append(next_guess)



print(next_guess)
[8.71963591e-08 1.00428680e-07]
In [317]:
pt.figure(figsize=(9, 9))

pt.axis("equal")

pt.contour(xmesh, ymesh, fmesh, 50)

it_array = np.array(guesses)

pt.plot(it_array.T[0], it_array.T[1], "x-")
Out[317]:
[<matplotlib.lines.Line2D at 0x7fe78a78c048>]
In [315]:
for i, guess in enumerate(guesses):

    print(i, la.norm(guess, 2))
0 2.039607805437114
1 1.3597385362818037
2 0.8296957665641046
3 0.41785029923493805
4 0.24532582175768264
5 0.10508154968346078
6 0.059791922016322774
7 0.015328144502394192
8 0.006032673968378717
9 0.0014933302414913351
10 0.0005424642572479524
11 0.00047936890761598815
12 0.0003323789236199735
13 2.406707379103359e-05
14 4.320675845534447e-05
15 1.3649136343804876e-05
16 5.333125657925825e-06
17 2.656196917967379e-06
18 1.2987876444411142e-06
19 6.899983272977852e-07
20 3.833795500074894e-07
21 1.3300046913355573e-07
In [ ]: