Newton's method in $n$ dimensions

Copyright (C) 2020 Andreas Kloeckner

MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
In [2]:
import numpy as np

import numpy.linalg as la
In [3]:
def f(xvec):

    x, y = xvec

    return np.array([

        x + 2*y -2,

        x**2 + 4*y**2 - 4

        ])
In [4]:
#clear

def Jf(xvec):

    x, y = xvec

    return np.array([

        [1, 2],

        [2*x, 8*y]

        ])

Pick an initial guess.

In [5]:
#clear

x = np.array([1, 2])

Now implement Newton's method.

In [6]:
#clear

x = x - la.solve(Jf(x), f(x))

print(x)
[-0.83333333  1.41666667]

Check if that's really a solution:

In [7]:
#clear

f(x)
Out[7]:
array([0.        , 4.72222222])
  • What's the cost of one iteration?

  • Is there still something like quadratic convergence?


Let's keep an error history and check.

In [8]:
xtrue = np.array([0, 1])

errors = []

x = np.array([1, 2])
In [19]:
#clear

x = x - la.solve(Jf(x), f(x))

errors.append(la.norm(x-xtrue))

print(x)
[1.50295992e-16 1.00000000e+00]
In [20]:
for e in errors:

    print(e)
0.931694990624912
0.21174886150566186
0.016858985788667225
0.0001252212359224592
7.011683691522178e-09
1.5029599174076677e-16
1.5029599174076677e-16
1.5029599174076677e-16
1.5029599174076677e-16
1.5029599174076677e-16
In [21]:
for i in range(len(errors)-1):

    print(errors[i+1]/errors[i]**2)
0.24393468845452265
0.37600123952862446
0.4405701781738273
0.4471634974555712
3.0570515787795163
6653537385912580.0
6653537385912580.0
6653537385912580.0
6653537385912580.0
In [ ]: