Composite Gauss Interpolation Error

Copyright (C) 2020 Andreas Kloeckner

MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
In [8]:
from __future__ import division

import numpy as np

import scipy as sp

import scipy.special as ss

import matplotlib.pyplot as pt

import numpy.linalg as la
Populating the interactive namespace from numpy and matplotlib
WARNING: pylab import has clobbered these variables: ['f']
`%pylab --no-import-all` prevents importing * from pylab and numpy
In [21]:
nelements = 5

nnodes = 3

mesh = np.linspace(-1, 1, nelements+1, endpoint=True)

gauss_nodes = ss.legendre(nnodes).weights[:, 0]*0.5 + 0.5



widths = np.diff(mesh)

nodes = mesh[:-1, np.newaxis] + widths[:, np.newaxis] * gauss_nodes
In [22]:
def f(x):

    return np.abs(x-0.123812378)



pt.plot(nodes.flat, f(nodes).flat)
Out[22]:
[<matplotlib.lines.Line2D at 0x107b3dc10>]
In [23]:
nmany_nodes = 32



many_gauss_nodes = ss.legendre(nmany_nodes).weights[:, 0]*0.5 + 0.5

many_nodes = mesh[:-1, np.newaxis] + widths[:, np.newaxis] * many_gauss_nodes



def legendre_vdm(nodes, nmodes):

    result = np.empty((len(nodes), nmodes))

    for i in xrange(nmodes):

        result[:, i] = ss.eval_legendre(i, nodes)

    return result



vdm = legendre_vdm(gauss_nodes, nnodes)

many_vdm = legendre_vdm(many_gauss_nodes, nnodes)

zero_pad = np.zeros((nmany_nodes, nnodes))

zero_pad[:nnodes, :nnodes] = np.eye(nnodes)

upterpolate = np.dot(many_vdm, la.inv(vdm))
In [24]:
fnodes = f(nodes)

fmany_nodes = np.dot(upterpolate, fnodes.T).T

pt.plot(many_nodes.flat, fmany_nodes.flat)
Out[24]:
[<matplotlib.lines.Line2D at 0x107bcc410>]
In [ ]: