Copyright (C) 2020 Andreas Kloeckner
import numpy as np
# Never mind the details of this function...
def left_pad(s, desired_len, pad="0"):
if len(s) < desired_len:
s = (desired_len - len(s)) * pad + s
return s
def pretty_print_fp(x):
print("---------------------------------------------")
print("Floating point structure for %r" % x)
print("---------------------------------------------")
import struct
s = struct.pack("d", x)
def get_bit(i):
byte_nr, bit_nr = divmod(i, 8)
return int(bool(
s[byte_nr] & (1 << bit_nr)
))
def get_bits(lsb, count):
return sum(get_bit(i+lsb)*2**i for i in range(count))
# https://en.wikipedia.org/wiki/Double_precision_floating-point_format
print("Sign bit (1:negative):", get_bit(63))
exponent = get_bits(52, 11)
print("Stored exponent bits: %d" % exponent)
print("Exponent (with offset): %d" % (exponent - 1023))
if exponent == 0:
print(" In subnormal range. Effective exponent: -1022")
fraction = get_bits(0, 52)
print(f"Stored fraction bits: ({left_pad(bin(fraction)[2:], 52)}_2")
if exponent != 0:
significand = fraction + 2**52
else:
significand = fraction
sig_str = left_pad(bin(significand)[2:], 53)
print(f"Significand: ({sig_str[0]}.{sig_str[1:]})_2")
print("Significand:", repr(significand / (2**52)))
pretty_print_fp(2**(-1025))
Things to try:
Twiddle the sign bit
1,2,4,8
0.5,0.25
$2^{\pm 1023}$, $2^{\pm 1024}$
float("nan")