Building and Using Sparse Matrices

Copyright (C) 2020 Andreas Kloeckner

MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
In [2]:
import numpy as np

import matplotlib.pyplot as pt



import scipy.sparse as sps

Building a sparse matrix

COOrdinate format is typically convenient for building ("assembling") a sparse matrix:

In [3]:
data = [5, 6, 7]

rows = [1, 1, 2]

columns = [2, 4, 6]



A = sps.coo_matrix(

        (data, (rows, columns)),

        shape=(10, 10), dtype=np.float64)

A
/usr/local/lib/python3.5/dist-packages/IPython/core/formatters.py:92: DeprecationWarning: DisplayFormatter._ipython_display_formatter_default is deprecated: use @default decorator instead.
def _ipython_display_formatter_default(self):
/usr/local/lib/python3.5/dist-packages/IPython/core/formatters.py:669: DeprecationWarning: PlainTextFormatter._singleton_printers_default is deprecated: use @default decorator instead.
def _singleton_printers_default(self):
Out[3]:
<10x10 sparse matrix of type '<class 'numpy.float64'>'
	with 3 stored elements in COOrdinate format>
In [4]:
A.todense()
Out[4]:
matrix([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  5.,  0.,  6.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  7.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
In [5]:
A.nnz
Out[5]:
3
In [6]:
pt.spy(A)
Out[6]:
<matplotlib.lines.Line2D at 0x7fcfcdd38f28>

For a COO matrix, the juicy attributes are data, row, and col.

In [9]:
print("row:", A.row)

print("col:", A.col)

print("data:", A.data)
row: [1 1 2]
col: [2 4 6]
data: [ 5.  6.  7.]

COOrdinate format is not the only format.

There is also Compressed Sparse Row:

In [12]:
Acsr = A.tocsr()

Acsr
Out[12]:
<10x10 sparse matrix of type '<class 'numpy.float64'>'
	with 3 stored elements in Compressed Sparse Row format>

For Compressed Sparse Row, look in data, indptr, and indices.

In [14]:
print("indptr:", Acsr.indptr)

print("indices:", Acsr.indices)

print("data:", Acsr.data)
indptr: [0 0 2 3 3 3 3 3 3 3 3]
indices: [2 4 6]
data: [ 5.  6.  7.]

Performance of the Matrix-Vector Product

The following code randomly generates a sparse matrix that has a given fill_percent percentage of nonzero entries:

In [18]:
fill_percent = 5



size = 1000

nentries = size**2 * fill_percent // 100



data = np.random.randn(nentries)

rows = (np.random.rand(nentries)*size).astype(np.int32)

columns = (np.random.rand(nentries)*size).astype(np.int32)



B_coo = sps.coo_matrix(

        (data, (rows, columns)),

        shape=(size, size), dtype=np.float64)



B_csr = sps.csr_matrix(B_coo)



B_dense = B_coo.todense()

Next, we time matrix-vector multiplication for different versions of B:

In [26]:
vec = np.random.randn(size)



from time import time

start = time()



for i in range(2000):

    B_dense.dot(vec)

    

print("time: %g" % (time() - start))
time: 1.96073
In [ ]: