import astropy.units as u
import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt
from einsteinpy.coordinates import BoyerLindquistDifferential
from einsteinpy.metric import Kerr
# Metric or Black Hole parameters - Mass, M and Spin Parameter, a
M = 4e30 * u.kg
a1 = 0.4 * u.one
a2 = 0.9 * u.one # Extremal Kerr Black Hole
# Coordinate object to initialize metric with
# Note that, for this example
# the coordinate values below are irrelevant
bl = BoyerLindquistDifferential(
t=0. * u.s,
r=1e3 * u.m,
theta=np.pi / 2 * u.rad,
phi=np.pi * u.rad,
v_r=0. * u.m / u.s,
v_th=0. * u.rad / u.s,
v_p=0. * u.rad / u.s,
)
# Defining two Kerr Black Holes, one with a higher spin parameter
kerr1 = Kerr(coords=bl, M=M, a=a1)
kerr2 = Kerr(coords=bl, M=M, a=a2)
# Getting the list of singularities
sing_dict1 = kerr1.singularities()
sing_dict2 = kerr2.singularities()
# Let's check the contents of the dicts
# 'ergosphere' entries should be functions
print(sing_dict1, sing_dict2, sep="\n\n")
# Sampling Polar Angle for plotting in Polar Coordinates
theta = np.linspace(0, 2 * np.pi, 100)
# Ergospheres
# These are functions
Ei1, Eo1 = sing_dict1["inner_ergosphere"], sing_dict1["outer_ergosphere"]
Ei2, Eo2 = sing_dict2["inner_ergosphere"], sing_dict2["outer_ergosphere"]
# Creating lists of points on Ergospheres for different polar angles, for both black holes
Ei1_list, Eo1_list = Ei1(theta), Eo1(theta)
Ei2_list, Eo2_list = Ei2(theta), Eo2(theta)
# For Black Hole 1 (a = 0.4)
Xei1 = Ei1_list * np.sin(theta)
Yei1 = Ei1_list * np.cos(theta)
Xeo1 = Eo1_list * np.sin(theta)
Yeo1 = Eo1_list * np.cos(theta)
# For Black Hole 2 (a = 0.9)
Xei2 = Ei2_list * np.sin(theta)
Yei2 = Ei2_list * np.cos(theta)
Xeo2 = Eo2_list * np.sin(theta)
Yeo2 = Eo2_list * np.cos(theta)
# Event Horizons
Hi1, Ho1 = sing_dict1["inner_horizon"], sing_dict1["outer_horizon"]
Hi2, Ho2 = sing_dict2["inner_horizon"], sing_dict2["outer_horizon"]
# For Black Hole 1 (a = 0.4)
Xhi1 = Hi1 * np.sin(theta)
Yhi1 = Hi1 * np.cos(theta)
Xho1 = Ho1 * np.sin(theta)
Yho1 = Ho1 * np.cos(theta)
# For Black Hole 2 (a = 0.9)
Xhi2 = Hi2 * np.sin(theta)
Yhi2 = Hi2 * np.cos(theta)
Xho2 = Ho2 * np.sin(theta)
Yho2 = Ho2 * np.cos(theta)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15,7.5))
ax1.fill(Xei1, Yei1, 'b', Xeo1, Yeo1, 'r', Xhi1, Yhi1, 'b', Xho1, Yho1, 'r', alpha=0.3)
ax1.set_title(f"$M = {M}, a = {a1}$", fontsize=18)
ax1.set_xlabel("X", fontsize=18)
ax1.set_ylabel("Y", fontsize=18)
ax1.set_xlim([-6100, 6100])
ax1.set_ylim([-6100, 6100])
ax2.fill(Xei2, Yei2, 'b', Xeo2, Yeo2, 'r', Xhi2, Yhi2, 'b', Xho2, Yho2, 'r', alpha=0.3)
ax2.set_title(f"$M = {M}, a = {a2}$", fontsize=18)
ax2.set_xlabel("X", fontsize=18)
ax2.set_ylabel("Y", fontsize=18)
ax2.set_xlim([-6100, 6100])
ax2.set_ylim([-6100, 6100])
The surfaces are clearly visible in the plots. Going radially inward, we have Outer Ergosphere, Outer Event Horizon, Inner Event Horizon and Inner Ergosphere. We can also observe the following:
As $a \to 1$ (its maximum attainable value), the individual singularities become prominent.
As $a \to 0$, some singularities appear to fade away, leaving us with a single surface, that is the Event Horizon of a Schwarzschild black hole.